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1. INTRODUCTION

Approximation problems are commonly dealt with by introducing a
suitable parametrization of the family of approximating functions under
consideration. Thus, Werner and Braess' description of exponential sums via
difference quotients [2] remains homeomorphic even for coalescing
frequencies and therefore greatly simplifies all problems related to the
topology of that manifold (e.g., existence of best approximations).

For other problems, though (like deriving characterizations of (local) best
approximations or designing algorithms to calculate good approximations),
information is needed not only on the topological but also on the differential
structure of the manifold. The above-mentioned parametrization fails to
supply that information when frequencies coalesce.

We therefore present in this paper a parametrization of y-polynomials
(e.g., exponential sums and splines) which retains its differentiability and
regularity properties even for coalescing frequencies. This helps to derive
necessary and sufficient conditions for local best approximations in a
geometric, illustrative way [5], which in turn is a prerequisite for developing
numerical procedures for the calculation of approximations [6]. One purpose
of this paper is to point out that the geometry of such manifolds as
exponential sums and splines have many features in common-in the spirit
of the investigations by Hobby and Rice [8] and de Boor [I].

Major difficulties in designing such regular C I-parametrizations stem from
the fact that the tangent cones of y-polynomials suffer from a loss of
dimension when frequencies coalesce [1].
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In Section 2 the parametrization is defined and basic properties are
derived. In Section 3 the differentiability and regularity of the
parametrization is proved. Since some of the formulas for nth degree y­
polynomials may look a bit complicated at first sight, we have included in
Section 4 a short discussion of the situation for y-polynomials of degree 3.
The tangent cones are explicitly calculated for this special case and our
parametrization is compared to classical parametrizations. The reader who is
not already motivated for the technicalities of Sections 2 and 3 is strongly
urged to read Section 4 before or parallel to studying the general case. In a
subsequent paper [5] the analysis of this article is used to derive necessary
and sufficient conditions for y-polynomials to be (local) best approximations.

The following notations wUI be used throughout this paper: Let n be a
natural number, T c IR with t::J T, Xc IR with X compact, not necessarily
finite, but IXI ~ 2n + 1. For given y E C(T X X), the set of continuous real­
valued functions on T X X, the difference quotient Lf{(t1'•.. , tk ) Yet, x) of y
with respect to the argument t is defined as usual [71. If the parti al
derivatives of y exist up to order n - I and are continuous with respect to t
and x, we can define the set of y-polynomials of degree n:

By I we denote the number of distinct characteristic numbers t j and m l , ••• , m/
are their respective multiplicities G:::i= I m j = n). Possible kernels yare: e lx

(exponential sums), (x - t)~ (splines), Xl, cosh(tx), arctg(tx), (I + tX)-1
(related to rational functions), (x - t)2n~1 (polynomial y-polynomials), and
others [3, 8]. A kernel y E C(T X X) is said to be an m-kernel, if (I) all
partial derivatives of y with respect to t exist up to order m and are
continuous in both arguments, and if (2) in addition, for all I E IN,
t l < t 2 < ... < t{ E T, the I· (m + 1) ~ IXI- 1 functions

o~ i ~ m, 1 ~j ~ I,

are linearly independent as elements of C(X). For an (m - I)-kernel y
(m ~ n) the set r:..m is well defined by

r:.m:= ttl j~1 auL1{-I(tl''''' t j ) Yet, . )11, m j E IN, m j ~ m,

tl m j = n, au E IR, tl< t 2 < ... < t/!.
We have r:.n = r:..

640/35/1-3



32 LUDWIG J. CROMME

y is a normal m-kernel if y is an m-kernel and for each g E r~.k

(n >k ~ m + 1) there is a 11·lloo-neighborhood U of g and a compact subset
of T such that the characteristic numbers t I , ... , tn of all elements of
(I"J.k\I"J-I.k) n U belong to the compact subset of T.

For a normal (n - 1)-kernel y the above parametrization induces a homeo­
morphism from J7:\T/,_I to the corresponding subset of IR 2n: The manifold
cannot bend back and cross itself; see Braess [3, p. 371.

For a given Lebesgue-measure on X the induced norm on C(X) is denoted
by IHq for 1~q~ 00.

To simplify formulas let us agree to interpret 2:7=j a; as zero for k <j, to
interpret i . (... ) as zero for i = 0 even if (... ) is not explicitly defined, and to
interpret (7) as zero for i <0 or i > k.

2. A PARAMETRIZAnON OF r:.

Our parametrization is designed to describe the neighborhood of a given y­
polynomial g. Since the neighborhood depends on g (for example, the
dimension of the tangent space or tangent cone varies with g), our
parametrization also depends on g.

Choose natural numbers n, I, ml'oo" m l with 2:;=1 m; = n. These will be
held fixed throughout this paper.

We set T:= IR; the following analysis can easily be extended to cases
where T is not the whole line, but rather a subset such as an open, closed, or
half-closed interval.

Our parametrization distinguishes linear and nonlinear parameters. The
nonlinear parameters are given by

M '-1 (fl' o~l), O~I) '00" o~; -1' f 2 , O~2),.oo, f p o~1) "00' O~;_I)T E IR n I

o& c5~k) & (i + 2)2 c5~k) •
"" I "" i 1+ l'

1 ~ k ~ I; 1~ i ~ mk - 2, 1 ~j ~ 1- 1 l.
For 1= n this simplifies to
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and the special case I = 1 yields

33

For a given (n - 1)-kernel y the parametrization p: IR n X M -t n is well
defined by

IR n M 3 ( .1:(1) .I:(/))T PX al'...,an,rl'ul "",um/_ I ~

I m/

L L as/+ j L
1=1 j=1 l+s/<I,<12<'" <Ij<s/+t

where for short the following notations were used:

j-I

Sj:= L mk ,
k=1

Again, this simplifies in special situations. For 1= n we have

n

IR n X M 3 (a!"", an' II"'" Inf~ L aIA;~ l(rl"'" r;) y(t, .),
i= I

and for I = 1 we get

n

L aj L A{-I(tLl
), ... , tJ/)) y(t, .)

j=l I<i t <· .. <Ij<n

with the til) as pictured in Table I where the parameter i(l ,;;;; i';;;; I) has been
omitted. In the general case (I > 1) we have I such groups of characteristic
numbers.

The following theorem asserts that p indeed parametrizes the y­
polynomials of degree n.

THEOREM 1. For an (n - 1)-kernel y E C(T X X) P is well defined and
parametrizes the set of y-polynomials ofdegree n: p(1R n X M) = r n.
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TABLE I

The Characteristic Numbers for I = I; the Index i (I <i <I) is Omitted

+(n-I)~

Proof To avoid getting lost in technical details we give a proof of the
above theorem only for [= 1. The proof can be extended to the general case
without major difficulties. Since [= 1 we can omit the index ranging from 1
to [.

We note that the function defined in Table I induces a one-to-one
correspondence between M and

{(tl' t z,"" tnf E IWlt l ~ tz~ ... ~ tn}·

To prove the theorem it is therefore sufficient to show that for arbitrary
ti E T, t l ~ tz~ '" ~ tn' there exists a real lower triangular n X n-matrix
L = (lu) such that for all a = (a l , ••• , an) E IR n we have, with (b l , ••• , bn) := La,

n

L aj L Ll{~ 1(ti1 , ... , ti) y(t, .)
j=1 1'01<i2<···<ij";n

n

= L biLl;-I(tl,... ,tJy(t,.)
i=1

and such that det(L) *- O.
To prove this, we transform the original expression. There exist au E IR

depending continuously on t1''''' tn' a I and linear in a I with

n

L aj L Ll{-I(ti1 ,· .. , ti) y(t, .)
j = I I <;; i 1< .•. < ij<;; n

+ L: (a z +ail i)Ll:(ti 1 ' t i) y(t,.)
l<;;i 1<i2<;;n

n

+ L: aj L: Ll{-I(ti1 ,· .., ti) y(t, .).
j = 3 I ,01< ... < ij':; n
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Only the recurrence formula L1~(ti) - L1~(t) = (t i - tj ) L1:(tj , tJ for difference
quotients has been used here. With suitable aUk E IW each depending either
on tl' t2 , ••• , tn' a l and linear in a l or on tl' t2 , ... , tn' a2 and linear in a2 (not
both) we continue this transformation to get

= C)alL1~(tl)y(t,.)

+ [(; ) a2 + ,L:, ai1i2 ] L1:(t l , t2) Yet, .)
1",<12,n

+ L: (a3+ai,i2i)L1;(ti"ti2,ti)y(t,.)
1:(.i 1<i2<i3<.n

n

+ L ai )' L1~-l(ti,,... , ti) Yet, .).
j=4 1<,i1<··· <ij<,n

By successive application of this process the elements of the matrix L can be
constructed. For our purposes it is sufficient to conclude that Iu= 0 for
1 :E;; i <j:E;; n and that Iii = (j), 1 :E;; i:E;; n, which proves that the determinant
of L is not zero. L is diagonal for t 1 = t2 = ... = tn' The reader should be
aware of the fact that

n

g('):=L:aj L L1~-I(ti" ..·,ti)Y(t,.)
j=l l'i,<i2<···'ij'n

may be in r:.-l although an *' O. But since L is diagonal with only positive
entries for t l = ... = tn and because L depends continuously on tl ,..., tn the Y­
polynomial g is an element of r~\r:._I for sufficiently small tn - t1 only if

an *' O. I

3. DIFFERENTIABILITY AND REGULARITY OF P

In this section we discuss differentiability and regularity properties of p.
At boundary points (at least two ty> coalescing) p is not Frechet­
differentiable. Therefore we need a slightly modified definition of differen­
tiability which can be obtained by relating consequently everything to the
region of interest (Q.omain). Note that the domain A off need not be open
nor do we require A:::J A.

DEFINITION 1. Let Bland B 2 be Banach-spaces, A a subset of B l' A
function f: A -t B 2 is said to be differentiable at x E A if there exists a
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f' (X) E Y'(B l' B 2) (the set of continuous linear mappings from B 1 to B 2)
such that for all e >°there exists a !J >°with

11/(x + h) -/(x) - f'(x)(h)11 ~ e ·llhll,

The derivative ofI at x E A is said to be singular if

~ (xl~L 11~1111f'(x)(h)ll) = °
o""llhlld

and regular otherwise.
F is continuously differentiable at z E A (''1 is C 1 at z E A") if for a

suitable B I-neighborhood U of z there exists a map f': A n U ---. Y'(B I' B 2)
such that (*) holds for all x E An U and such that, in addition,

lim sup (-llh1111If'(z)(h) - I' (x)(h)1I ) ---. 0, for Ilx - z 11---.0. I
b~O Z+hEA

0"" Ilh II< b

For open sets A the above differentiability and Frechet-differentiability are
the same. To illustrate the difference let us consider an

EXAMPLE. With A := {(x,yfE 1R2Ix2?y?0, x?Of define/:A---.1R 2

by

I(~ ):= C+:2/X2)'

:= (~),

x*,O,

x=y=O.

I is C I for all z E A in the sense of Definition 1 (including z = (0, Of), I is
even a C I-diffeomorphism, that is, I - I :I (A) ---. B I exists and is also C I.
Nevertheless, there exists no extension ofI to a 1R 2-neighborhood of (0, Of
such that the extended function is continuously Frechet-differentiable at
(0, Of (see [4 J).

In the following, differentiability is always meant in the sense of
Definition I unless otherwise stated.

Remark. Definition 1 allows us to speak of differentiability even for
functions which are defined on domains with cusps, that is, where the
dimension of the tangent cone of a point of the domain varies with that
point. The differential topology of such manifolds with cusps (which include
the set of y-polynomials of degree n) is quite interesting and worthy of more
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investigations. Our parametrization p is defined on a polyhedral set and
therefore some of the pathologies of the general case cannot occur. Namely,
the derivative of p must be unique if it exists.

THEOREM 2. For a (k + 1)-kernel with k ~ n and for arbitrary a =
(al''''' an' fl' 0,... ,0, f 2 , 0,... , f/, 0,... , O)T E IW X M with p(a) E n,k\n-l'k
the parametrization pis C I in (IR n X M) rl U for a neighborhood U of a and
regular in a and for all parameters from (IR n X M) with all characteristic
numbers tjO distinct.

The following lemma allows us to prove Theorem 2 by analyzing partial
derivatives only; see Krabs [9J for a similar lemma in the case of Frechet­
differentiable functions.

LEMMA 1. For a polyhedron C c IR m (intersection of a finite number of
half-spaces) let G: C X X --> IR be continuous with respect to both arguments.
Assume that for arbitrary c E C, c +dEC, x E X the directional derivative
G' (c, x; d) (from c in direction d) exists and is continuous with respect to all
three argumeilts. Then

g: C --> (C(X), 11·llq ), g(c)(x) := G(c, x), VcE C,xEX,

is C 1 for all q, I ~q~ 00.

Remark. The lemma can easily be extended to cover the case of compact
topological spaces X.

ProofofLemma 1. For cE C, c+ cl''''' C +cm E C, and CI''''' Cm linearly
independent and normalized (1Ic;11 = 1) we define g'(c) by

For c + Et3;ci E C an application of the mean-value-theorem yields
Ai E [0, 1J:

g (c + tl 0iCi )(x) - g(c)(x)

= t [g(c+ ±OjCj)(X)-g (c+ i~ O;c;)(X)]
1=1 J=I J~l

m

= L 0iG'(C, x, Ci)
i=1
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sup
xEX,dEC
d+CiEC
IIc-dlid

"g (C + i~1 (iiCi) - g(C) - g'(C)C~1 (iiCi) Ilq

~ k . 11«(i1 ,..., (imfll .

x IG'(d, X; Ci ) - G'(C, X; c;)l· (Ix 1dX) l/q.

The supremum tends to zero because X is compact and G'(-,.;.) is
continuous. This proves differentiability. It is easily seen that g is indeed
Cl. I

ProofofTheorem 2. In view of Lemma 1, to prove thatp is continuously
differentiable, we have only to investigate partial derivatives. As before we
discuss only the case where all characteristic numbers coalesce (I = 1, k = n)
in order to avoid confusion by too many indices. In view of Lemma 1, it is
sufficient to prove the following three convergence results for

n A (n) . i A A
---> L ai . • I . Llt(r,... , r) y,

i=1 I

(1)

(2)

n+2
. "b i "j_I(A A)---> L.... jLJ t r,oo., r y

j=2

for certain bj E IR,

b~+2 . an > O. (3)

The proof of (1) and (2) is straightforward. To prove (3) we analyze

1~ i ~ n. (4)
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Partial derivatives with respect to OJ (1 ~ i <n - 1) can be derived with the
help of and in analogy to the analysis of (4). For 1 ~ i ~ n we have

L
l<h<"'<1;<n

i

L ,1 :(th ,... , t1;' tjk ) y
k=1
jk"Fn

+ L (n - 1) Ll ~(th"'" t1;_" tn' tn) Y,
1<11<··· <1;-I<n

where the differentiation has been performed; next, we reorder the difference
quotients of order i which then enables us to rewrite the expression as a sum
of difference quotients of order i + 1.

= L
I<h<··· <h-I<n

n-I

L [,1 ~(tjl ,... , tjH , tn' tn) Y-,1 ~(tjl ,... ,
k=1

k*h" ·k*h_1 th _
"

t k, tk) y]

i-I

+ L [,1:(tjl'"'' th_l , tn' t n) y-,1:(th'"'' tjH , tn' tj ) y] I
k=1 \

n-l

= L (tn - tk)
k=1

n-I

=~.n·L
k=1
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'" [ ;+ 1-j. L .1 1 (th,···,th_"tj+1'tn,tn)Y
l<jl<'''<h~l<n ;+1

j+l*h.....j+l*h-, +.4 (t t t t t)y]
LJ I jl'"'' ji-I' j+I' j+I' n

-j. L .1~+I(th'· ..'th_2'tj+I'tj+1'tn'tn)YI.
I<h<"· <h-2<n \

j+ 1*h .....j+ I *h-2

The last transformation reorders the difference quotients according to their
factors VJ; and requires some detailed bookkeeping.

Since 0iOn-1 is bounded (for arguments of p(!!)) and since the last
expression enclosed in braces converges to zero for 0n_ 1-40, we get

n( )[(n-2) 2 (n-2)] i+I(A A)
-4 2 n - I i _ 2 + . i-I .1 I r,... , r Y (I <: i <: n).

(5)

(I), (2), and (3) allow us to apply Lemma I, which proves the claimed dif­
ferentiability.

Next, we prove the regularity of p: Let (.1a1'... ,.1an,.1r, .101''''' JOn_I) be
a feasible perturbation of a with at least one JO; nonzero. For certain
hI"'" hn + 2 E IR we have

n+2
L h;.1~-I(r, ... ,r)y.
i=1

Only the .10; (op/oO;) conribute to hn+ 2 and the contribution is zero or has
the same sign as a which is nonzero because p(a) has maximal degree,
p(a) E r:..kV7.-I.k' Thus, hn +2is nonzero iff at least one JO; is nonzero. This
proves the regularity for a perturbation with at least one JO; nonzero. If all
Jo; are zero the regularity follows from the linear independence of
{JO(r) y,... , In(r,..., r) y}. Therefore, p is regular in a.

The regularity in interior points (all characteristic numbers distinct) can
be reduced to the regularity of the parametrization 1:7= 1 a; J; -I(t1"'" t n) Y
for all characteristic numbers distinct. I



EXPONENTIAL SUMS AND SPLINES

4. THE SPECIAL CASE n = 3
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(6)

To better illustrate the ideas of the preceding two sections let us consider
the case n = 3. The classical parametrization

litl Giy(t;, . )IGp ti E IR, t l ~ t2~ t3!

does not even allow one to represent elements in the closure: For example,

y(t + 6, .) - y(t, . )

6

is an element of (6) for each 6 >0, but the limit (a/at) y(t, .) for 6 -+ 0 is not
in (6). To overcome this difficulty Werner and Braess [2] used difference
quotients to parameterize y-polynomials:

This induces indeed a homeomorphic representation of rnvn
-I and is

therefore of great help for all problems concerning the topological structure
of y-polynomials. But for coalescing characteristic numbers (t 1 = t 2 = t 3 = r)
the partial derivatives of Braess' parametrization span only a four­
dimensional space, whereas our parametrization p spans the full tangent
cone, a five-dimensional space with a sign-restriction.

Let us reconsider our parametrization for the special case n = 3 for three
coalescing characteristic numbers (that is, 1= 1, m l = 3). This gives us

M = {(r, 61 , 62)T E 1R 3
1 0 ~ 61 ~ 9· 62 },

p«G 1 , G2 , G3 , r, 61' 62f)
= GI[J~(tl) y +J~(t2) Y+J~(t3) y]

+G2[J:(t1' t2) Y+J:(t1' t3)Y+,1: (t2' t3) y]

+ G3L1;(t1' t2, t3) Y

with

and G 3 "* 0 if p(. ) E rt\FI and t 3 - t l are sufficiently small.
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From Theorem 1 we conclude p(1R 3 X M) = rj, which is indeed an
immediate consequence of the identity

3

L:a; L: L1:~I(fh,···,fh)Y
;= 1 I<;;h<··· <h<;;3

The differentiability of p follows from the continuity of the partial
derivatives with Lemma 1. For a parameter from 1R 2 X M with O2 *- 0 we get,
for the partial derivative with respect to °2 , after some intermediate
calculations,

op 3 [2 2)
002 =Tal L1t(fpfpf3)y+L1t(fpf3,f3 y

+ L1~(f2' f2, f 3h' + L1~(t2' f 3, (3) y]

3 [3 3+ T a2 L1 t (f p f p f2, (3) Y+ L1 t (tp f2, f2, (3) Y

+ 4L1i(tI' f 2 , f 3 , ( 3 ) y]

fjp/fj(j2 is continuous for (j2 --. 0 only because 0 ~~~ 3~ (or v'01/02 is
bounded) for arguments from 1R 3 X M(!).

The derivatives for three coalescing characteristic numbers (0 1 = O2 = 0)
are
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:: = 2a 1Li;(r, r, r) y + 3azLii(r, r, r, r) y +a 3Li:(r, r, r, r, r) y;
1

:: = 6a 1Li;(r, r, r) y + 9azLii(r, r, r, r) y + 3a 3Li:(r, r, r, r, r) y.
z

43

The derivative is regular because only nonnegative perturbations are
feasible for the vanishing 0 1 = Oz = O. Thus, there is no perturbation h with
h + (ai' az, a 3 , r, 0, Or E 1R 3 X M and hJ(op/oa l ) + ... + h6(op/oOz) == O.
Once regularity is established it is easy to calculate the tangent cones. The
tangent cone atp((a J, az, a3 , r, 0, Or) with a3 *0 is

\ 3 op op op op I II;:;'J hi oa
i

+ h4 or + hs 001 + h 6 oOz hi E IR, 0 ~ 0 + hs~ 9(0 + hz)\

= 1itl hI Li;-I(r,..., r) Yet, .)Ih; E IR, sgn(a 3 • hs) ~ 0(.

The parametrization is not necessarily regular, though, for two coalescing
characteristic numbers. For a:= (0, 0, a 3 , r, 01' 90 lr E 1R 3 X M and 01 > 0
we have

o 0
3-p(a)--p(a)=OE C(X).0° 1 OOz

If the tangent cone of a y-polynomial is to be calculated the polynomial has
to be fixed first and then a parametrization can be constructed which is
regular at that point.

5. CONCLUDING REMARKS

In the preceding sections we discussed a novel parametrization p for y­
polynomials which has two advantages over older parametrizations: (i) It is
differentiable and regular even for coalescing characteristic numbers and (ii)
the parameter sets are simply polyhedral. This makes it very easy to
calculate the tangent cone of an element g E Tn\Tn_ 1 for a normal y­
polynomial: The tangent cone is simply the cone spanned by the image of all
feasible perturbations under the derivative of p at that point. Thus, our



44 LUDWIG J. CROMME

parametrization helps establish invariant properties of y-polynomials, that is,
properties which are independent of individual parametrizations. This is a
big step towards another invariant property: In a subsequent paper [5] we
rely heavily on tangent cones to establish necessary and sufficient conditions
for a y-polynomial to be a local best approximation.
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